Johanna M. Blacquiere

Blacquiere115x150.jpg

Contact Information

Title: Assistant Professor
Office: BGS 2022 
Phone (Office): ext 81284
E-mail: johanna.blacquiere@uwo.ca

Inorganic Teaching Division

Synthesis, Catalysis and Molecular Materials

Organometallic Chemistry, Catalysis, Ligand Design

Education

B.Sc. Mount Allison University; Ph.D. University of Ottawa; Postdoc: University of Washington

Awards

  • NSERC Discovery Accelerator Supplement, 2020
  • 深夜福利站 Science Award of Excellence in Undergraduate Teaching, 2018
  • Ontario Early Researcher Award, 2018
  • Petro-Canada Young Innovator Award, 2015
  • NSERC Post-Doctoral Fellowship, 2011-2013

Research

is targeting fundamental studies of transition-metal complexes for applications in sustainable catalysis. Current demands in the fine chemicals industry for the construction of high-value compounds by streamlined, low- toxicity and low-waste approaches is driving the need for new synthetic methods. This research program will target selective functionalization strategies that activate abundant small molecules such as H2O and O2. Ultimately first-row metal complexes will be employed, where design strategies, in some cases, will be informed by more tractable second-row analogues.

This research program is further unified by the design of ligands that have the capacity for bifunctional behaviour that have the potential to increase catalyst lifetimes, stabilize reactive intermediates and promote otherwise inaccessible reaction pathways. Projects are focused on three main areas:

  1. Development of improved catalytic systems and mechanistic understanding of the anti-Markovnikov hydration of alkynes. Catalyst development will focus on the ability of the catalyst to mediate intramolecular proton transfer through second-coordination sphere interactions.

  2. Fundamental studies into transition metal catalyzed oxidation reactions utilizing dioxygen as both oxidant and substrate. Hydrogen bonding to reactive intermediates from pendant ligand functionalities is postulated to address the common aerobic oxidation challenges of over-oxidation and poor selectivity.

  3. A new class of ligands displaying dynamic coordination to a range of transition metals will be studied for their use in challenging of catalytic methodologies. Perferred ligand binding modes, dynamic interactions and stability will be estblished using complementary analytical techniques.

Students will become technically skilled in synthesis, characterization, catalytic testing and mechanistic analysis. Training will include both organic and inorganic synthesis, and techniques for the handling of air-sensitive compounds. A broad range of analytical methods will be relied on to analyze both the organic and organometallic reaction constituents. Techniques include, but not are limited to, NMR, GC-FID, mass spectrometry, UV-vis, IR, XRD and electrochemistry.

Teaching

  • 2281 - Inorganic Chemistry of the Main Group Elements
  • 4471 - Transition Metals and Catalysis
  • 9521 - Catalysis
  • 9531 - Molecular Energy Conversion

Selected Publications