


In this paper, we use the computer-algebra system Maple to investigate
the properties of series expansions for W . We focus on a number of asymptotic
expansions for large z; these are also valid for non-principal branches around
z = 0. One practical application of the series is to provide initial estimates for
the numerical evaluation of W ; these estimates can then be refined using itera-
tive schemes to provide the arbitrary precision computations used in computer
algebra systems. The series also have intrinsic interest. For example, the defi-
nition above of the branches Wk is based on partitioning the plane using the
asymptotic series. Another interest is the fact that the asymptotic series are also
convergent, and the nature of the convergence is one particular interest of this
paper. In this paper, we shall mostly be concerned with the principal branch
k = 0, which is the only branch that is finite at the origin. We shall abbreviate
W0 to W for the rest of the article.

The first asymptotic series is that found by de Bruijn [4] and Comtet [5] as

W (z) = ln z − ln ln z + u ; (3)

where u has the series development

u =
1∑
n=1

n∑
m=1=1



2 Computer algebra tools

We shall be using a number of tools from Maple in the work below. The co-
efficients appearing in the expansions (4) and (5) can be computed from their
generating functions as follows. The 2-associated Stirling subset numbers are
defined by the generating function

(ez − 1 − z)m = m!
∑
n�0

zn

n!

{
n

m

}
�2

:



Substituting into the defining equation WeW = z, we obtain(
ln z − ln(p+ ln z) + u

)
zeu

p+ ln z
= z

From this, it is clear that if we define

� =
1

p+ ln z
and � =

p+ ln(p+ ln z)

p+ ln z
; (9)

then we recover the equation originally given by de Bruijn for u.

1 − � + �u− e�u = 0 : (10)

The remarkable property is that (10) is invariant with respect to p, with only the
definitions of � and �



4 Domain of Convergence

We wish to investigate first the domains of z ∈ R for which the various series
above converge, and how the domains vary with p. We begin with a theoretical
result for p = 0.

Theorem 1. The series (4) converges for p = 0 for all z ≥ e.

Proof. For p = 0, we have � = −� ln�



The domain of convergence cannot be extended to z < e, because the series
for du=dz diverges at z = e. This can be seen by noting that � = 0 at z = e (for
p = 0). All terms reduce to zero except m = 1 which gives the sum

1

e

1∑
k=0

(



confirms that the point of divergence moves to larger z for decreasing p and to
the left for increasing p.

Fig. 3. For series (5), the ratio W (40)(z, p)/W (z) as functions of z for p = −1, 0, 1.
Compared with Figure 2, this shows convergence down to smaller z.

A similar investigation of series (6) shows an interesting non-monotonic
change in the domain of convergence. In Figure 4 the partial sums are plotted
and the boundary of the domain of convergence moves to the right for p ̸= 0.

We can summarize these findings by noting that series (5) has the widest
domain of convergence, and the best behaviour with p, while the domains of
convergence for series (4) and (6) become worse in that order.

5 Rate of convergence

By rate of convergence, we are referring to the accuracy obtained by partial
sums of a series. Given two series, each summed to N terms, the series giving on
average a closer approximation to the converged value is said to converge more
quickly. The qualification ‘on average’ is needed because it will be seen in the
plots below that the error regarded as a function of z can show fine structure
which confuses the search for a general trend. Further, the comparison of rate
of convergence between different series can vary with z and p. For some ranges
of z, one series will be best, while for other ranges of z a different series will be
best. Although one series may converge on a wider domain than another, there
is no guarantee that the same series will converge more quickly on the part of
the domain they have in common. The practical application of these series is to
obtain rapid estimates for W using a small number of terms, and for this the
quickest convergence is best, but this will be dependent on the domain of z.



Fig. 4. For series (6), the ratio W (40)(z, p)/W (z) against z for p = −1, 0, 1, 2. Compared
with figures 2 and 3, the changes in convergence are no longer monotonic in p.

The previous section showed that positive values of the parameter p extend
the domain of convergence of the series, but its effect on rate of convergence is
different. Figures 5, 6 and 7 show the dependence on z of the accuracy of compu-
tations of the series (4),(5) and (7) respectively with N = 10 for p = −1;−1=2; 0
and 1. One can see that the behaviour of the accuracy is non-monotone with
respect to both z and p although some particular conclusions can be made. For
example, one can observe that for the series (4) at least for z < 30 within the
common domain of convergence the accuracy for p = −1=2; 0 and 1 is higher
than for p = −1. The series (5) and (7) have the same domain of convergence
and a very similar behaviour of the accuracy. Specifically, for these series an
increase of positive values of p reduces a rate of convergence within the common
domain of convergence i.e. for z > 1:5. However, at the same time for z > 11
computations with p = −1 are more accurate than those with positive p and for
5 < z < 18 the highest accuracy occurs when p = −1=2.

The next two figures 8 and 9 display the dependence of convergence properties
of the series (4) and (5) respectively on parameter p for different numbers of
terms N = 10; 20 and 40. Again, the curves in these figures confirm that the
accuracy strongly depends on parameter p and is non-monotone and show that
on the whole an increase of the number of terms improves the accuracy. It is
also interesting that there exists a value of p for which the accuracy at the given
point is maximum; this value depends very slightly on N and approximately is
p ≈ −0:75 in Figure 8 and p ≈ −0:5 in Figure 9.
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Fig. 5. For series (4) with N = 10, changes in accuracy in z for p = −1,−1/2, 0 and 1.

Fig. 6. For series (5) with N = 10, changes in accuracy in z for p = −1,−1/2, 0 and 1.

Fig. 7. For series (7) with N = 10, changes in accuracy in z for p = −1,−1/2, 0 and 1.



Fig. 8. For series (4), the accuracy as a function of p at fixed point z = 18 for N = 10, 20
and 40.

Fig. 9. For series (5), the accuracy as a function of p at fixed point z = 9 for N = 10, 20
and 40.



6 Branch −1 and complex p

The above discussion has considered only real values for the parameter p. We
briefly shift our consideration to complex p and to branch −1. For z in the
domain −1=e < z < 0, we have that W�1(z) takes real values in the range
[−1;−∞). The general asymptotic expansion (2) takes the form

W�1(z) = ln(z) − 2�i− ln(ln(z) − 2�i)



Fig. 10. Errors in approximations (18) and (19) for W−1.

7 Taylor series

We have seen that the transformation allows us to obtain series valid for a wider



and the Lagrange Inversion Theorem [11]. To apply this theorem it is convenient
to introduce a function that is zero at t = 0. We consider the function

v = v(t) = W (et)=! − 1 (26)
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