De inition 1 (RC and CRC). Let $p(x)$ 2 R[x]. The root classi cation (RC) of $p(x)$ is denoted by [[n_1 ; n_2 ;:::];[m_1 ; $_1$ m_1 ; m_2 ; $_1$ m_2 ;:::]] where n_k are the multiplicities of the distinct real roots of $\rho(\textit{x})$, and m_k

2.1. Discriminant Sequence and Related Sequences

Yang, Hou & Zeng (1996) de⁻ned the following quantities as the basis of their algorithm. Let $p \nleq R[x]$ and write $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ell \ell \ell + a_0$, where $a_n \neq 0$.

De⁻nition 2. The discrimination matrix of p is the $2n E 2n$ matrix

 $M =$ \bigcirc BBBBBBBBBBBBBBB@ $a_n a_{n-1} a_{n-2} \dots a_0$ 0 *na*_n (n ¡ 1)a_{n−1} ::: a₁ a_n a_{n-1} ::: a_1 a_0 0 na_n ::: $2a_2$ a_1 \vdots $a_n a_{n-1} a_{n-2} \cdots a_0$ 0 na_n $(n_i 1)a_{n-1}$::: a₁ 1 CCCCCCCCCCCCCCCA : (1)

De⁻nition 3 (Discriminant Sequence). For $1 \cdot k \cdot 2n$, let M_k be the kth principal minor of M, and let $D_k = M_{2k}$. The n-tuple $D = [D_1; D_2; \dots; D_n]$ is called the discriminant sequence of p .

De nition 4 (Sign List). If $[D_1; D_2; \dots; D_n]$ is the discriminant sequence of p and sgn x is the signum function with sgn 0 = 0, then the sign list of p is [sgn D_1 ; sgn D_2 ; :::; sgn D_n].

De⁻nition 5 (Revised Sign List). The revised sign list $[e_1; e_2; \dots; e_n]$ of p is constructed from the sign list $s = [s_1; s_2; \dots; s_n]$ of p as follows.

If $[s_i; s_{i+1}; \ldots; s_{i+j}]$ is a section of s, where $s_i \not\in 0$, $s_{i+1} = s_{i+2} = \ldots = s_{i+j-1} = 0$ and s_{i+j} 6 0, then we replace the subsection $[s_{i+1}; \ldots; s_{i+j-1}]$ by $[i\; s_i; j\; s_i; s_i; j\; s_i; j\; s_i; \ldots]$ such that $e_{i+r} = (j \,\, 1)^{\lfloor (r+1)/2 \rfloor}$ s $_i$ ($r = 1/2$]TJ/F39. 96Tf6. 961. 49TD[(-6)_]TJ/D[(-=)_-277(-(-)_]2840T267-1eTJ/I

2.2. Sturm-Habicht Sequence and Related Sequences

Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ell \ell \ell + a_0$ and $q(x) = b_m x^m + b_{m-1} x^{m-1} + \ell \ell \ell + b_0$ be two real polynomials with $n = \deg(p) > m = \deg(q)$.

In this section, we introduce the concept of subresultant sequence which comes from Sylvester (1853) and Collins (1967), the concept of Sturm-Habicht sequence which was **Remark 11.** The relationship between the discriminant sequence $[D_1; \dots; D_n]$ of p and the principal Sturm-Habicht coe±cients of p and 1 is: $D_j = a_n \text{ stha}_{n-j}$ (=

Proposition 14. Let $p \, 2 \, R[x]$ have revised sign list $rsl(p)$. If the number of non-vanishing elements in rsl(p) is s, and the number of sign changes in rsl(p) is v, then $p(x)$ has v pairs of distinct complex conjugate roots and s_i 2v distinct real roots.

Proposition 15. If $\Phi^{j}(p)$ has k distinct roots with respective multiplicities n_1

Since each of D_4 ; D_5 ; D_6 can be positive, zero or negative, there are 27 possible realizations of this sign list to examine. Let us consider the following example sign list: the case $D_4 < 0; D$

mapping © from a sign list to a revised sign list. Therefore the existing algorithms require the inverse mapping ©^{−1}. However, © is not injective, so ©^{−1} is multivalued, and more importantly is $di \pm \text{curl}$ to compute.

As an example, consider the polynomial $p_6 := x^6 + ax^2 + bx + c$, whose discriminant sequence was given in (3). One condition (among many) for p_6 having no real roots is that its revised sign list be $[1; i 1; i 1; i 1; i 1; i 1]$. According to the special structure of the discriminant sequence of $p₆$, we have

 $\mathbb{O}^{-1}[1; j 1; j 1; j 1; j 1] = f[1; 0; 0; 1; j 1; j 1]$; $[1; 0; 0; 1; 0; j 1]$; $[1; 0; 0; 0; j 1; j 1]g$:

Therefore, the given condition is transferred to the following:

 $[D_4 > 0 \ ^{\wedge}D_5 < 0 \ ^{\wedge}D_6 < 0]$ $[D_4 > 0 \ ^{\wedge}D_5 = 0 \ ^{\wedge}D_6 < 0]$ $[D_4 = 0 \ ^{\wedge}D_5 < 0 \ ^{\wedge}D_6 < 0]$:

This case, already cumbersome, is none the less relatively simple because of the nature of the polynomial. However, if the polynomial were a general parametric polynomial, it would be very di±cult to $\lceil \text{nd } \mathbb{O}^{-1}[1/j | 1/j | 1/j | 1/j | 1]$, and of course more so for higher degrees. Consequently, it would be a great improvement to avoid revised sign lists.

The second point concerns the realizability of the conditions obtained by the inverse mapping ©⁻¹. We continue with the example of $x^6 + ax^2 + bx + c$.

Example 18. 6

where $a_{n-m} = (1)^{(n-m)(n-m-1)/2}$.

The main theorem for the improved CRC algorithm requires the following lemmas which can be found in Basu, Pollack & Roy (2003). Let Ind($q=p$) be the Cauchy index of $q=p$ on R.

Lemma 21. Given two polynomials $p(x)$; $q(x)$ in R[x], we have TaQ(q; p) = lnd(p'q=p).

Lemma 22. Let $p(x)$; $q(x)$ be the two polynomials in Section 2.2. We have

PmV([sRes_n(p; q); sRes_{n−1}(p; q);:::; sRes₀(p; q)]) = Ind(q=p) :

The main theorem is the following

Theorem 23. Let $D = [D_1; \dots; D_n]$ be the discriminant sequence of a real polynomial $p(x)$ of degree n, and let ` be the maximal subscript such that D_ℓ 6 0. If PmV(D) = r, then p(x) has r + 1 distinct real roots and $\frac{1}{2}$ (` $_{I}$ r $_{I}$ 1) pairs of distinct complex conjugate roots.

Proof. We $\overline{}$ rst prove that

$$
\#f^{\circledast}2\mathsf{Rjp}(\mathscr{B})=0g=\mathsf{PmV}([D_1;\ldots;D_n])+1:
$$

Observe that $\#\ f^{\circledast} 2 \text{ Rj} p(\text{P}) = 0$ g = TaQ(1; p). Then from Lemma 21, we have TaQ(1; p) = Ind($p' = p$). By Lemma 22,

$$
Ind(p' = p) = PmV([sResn(p; p'); sResn-1(p; p'); \ldots; sRes0(p; p')]:
$$

By Remark 13,

$$
PmV([sResn(p; p'); sResn-1(p; p'); \dots ; sRes0(p; p')]
$$

= PmV([sgn(a_n); D₁=a_n; \dots ; D_n=a_n]) = 1 + PmV([D₁=a_n; \dots; D_n=a_n]) ;

since sgn(a_n) and $D_1=a_n = na_n$ have the same sign. Finally,

 $1 + PmV([D_1=a_n; \dots; D_n=a_n]) = 1 + PmV([D_1; \dots; D_n])$

Example 25. We give an example of the use of the above corollary, by proving the nonrealizability of condition (4) from a di®erent point of view. The condition is equivalent to the sign list $[1; 0; 0; 0; i \neq 1]$, which has revised sign list $[1; i \neq 1; i \neq 1; i \neq 1]$. Since

 $PmV([1;0;0;0;1;1;$

Let $p(x) = a_n x^n + \cdots + a_1 x + a_0$ be a real parametric polynomial with $a_n \neq 0$. The algorithm starts from generating all possible RCs for $p(x)$ using AllListsReal. Then for each RC L, we $\overline{}$ nd the conditions on the parametric coe \pm cients of $p(x)$ such that L is realized.

We $\overline{\ }$ rst compute all possible sign lists of $p(x)$ for $p(x)$ having L as its RC.

Algorithm 1. GenAllSL

Input: A real parametric polynomial $p(x)$ and an RC L .

Output: The set of all the sign lists of $p(x)$ that lead to the RC given by L. Procedure:

² $[n; \cdot; r]$ \tilde{A} RCI nfo(L).

- ² Compute the discriminant sequence $D = [D_1; \dots; D_n]$ of p.
- ² Compute the set S_0 of all possible sign lists from D: for $1 < k \cdot n$, if D_k 2 R, then D_k ! sgn(D_k); otherwise, D_k ! f_j 1; 0; 1g. For example, if $D = [1; j \ 2; a]$, then $S_0 = f[1; j \ 1; j \ 1][1; j \ 1; 0]$; $[1; j \ 1; 1]g$.

² Compute $S = fs$ 2 S_0 *j* MaxSubs(*s*) = \cdot ; PmV(*s*) = PmV(rsl(*s*)) = r_{*i*} 1*g*,

² Return S.

Then S = GenAllSL(p/L) is the set of all possible sign lists of $p(x)$ for $p(x)$ having L as its RC. In order to make the multiplicities of the roots of $p(x)$ be those speci⁻ed by L, we also have to determine the possible sign lists of the polynomials in the \mathfrak{C}_i sequence of $p(x)$ (De $\overline{\ }$ nition 6), except for the following $\overline{\ }$ ve cases (*termination conditions*): if the RC of $p(x)$ is L and is such that $[n: r] = RCInfo(L)$, then these cases are

(1) $n =$ (2) = 1. (3) \leq = 2 and $r = 0$. (4) $n_j = 1$. (5) $r = 0$ and n_i \geq 2.

For other cases, $\mathfrak{C}^1(p) = \mathfrak{L}_{n-\ell}(p)$, the (n_i) ')th multiple factor of $p(x)$ (De⁻nition 7). By Proposition 15, the RC of $\Phi^1(p)$ would be $L_1 = M$ inus0ne(L). Then we can call GenAll SL recursively. This is the basis of the following algorithm which generates the conditions for $p(x)$ having L as its root classi \bar{c} cation. The output conditions are a sequence of *mixed lists*. Each mixed list consists of a polynomial in the ¢-sequence of $p(x)$, followed by all of its possible sign lists. We denote the empty sequence by NULL. Notice that if NULL is returned, then *L* is not realizable.

Algorithm 2. Cond

Input: a real parametric polynomial $p(x)$; an RC L. Output: A sequence of mixed lists (the conditions for $p(x)$ having L as its RC). Procedure: $[n; \cdot; r]$ \tilde{A} RCI nfo(L) $S \tilde{A}$ GenAll $SL(p; L)$ if $S =$; return NULL else if $[n; \cdot; r]$ meets one of the $\overline{}$ ve cases return $[p;Op(S)]$ else

11

 $C \tilde{A}$ Cond

S0.4w58.23s2187
Table 1. Numbers of Non-realizable Sign Lists Detected by Corollary 24 $SO.4 \vee 58.23$ s2187

Degree n		\sim	c J		5					10	11
$2n-1$		2 J	o	\sim \sim	81	243	729	2187	6561	19683	59049
Detected											

```
[p6, [1,0,0,1,0,0]]
(10) [[],[1,-1,1,-1,1,-1]], if and only if
      [p6, [1, 0, 0, 0, 1, -1], [1, 0, 0, -1, 1, -1], [1, 0, 0, 1, 0, -1],[1,0,0,0,0,-1], [1,0,0,1,-1,-1], [1,0,0,1,1,-1]]
where
(#1) p6: =x^6 + a^*x^2 + b^*x + c,
and its discriminant sequence is:
[1, 0, 0, a^3, 256^*a^5+1728^*c^2^*a^2-5400^*a^*c^*b^2+1875^*b^4,-1024*a^6*c+256*a^5*b^2-13824*c^3*a^3+43200*c^2*a^2*b^2
-22500*b^4*c*a+3125*b^6-46656*c^5](#2) p62: = 4*a*x^2+5*b*x+6*c,and its discriminant sequence is:
 [1, 25^*b^2-96^*a^*c]
```
Let us explain the CRC of p_6 with respect to the improved algorithm. First, the algorithm CRC calls the function AllListsReal to generate all possible root classi $\bar{\ }$ cations (RCs) for a polynomial of degree 6. There are 23 RCs as follows. For the sake of simplicity, the order of them has been changed.

```
[ [ [[3,3], []], [ [[2,4], []], [[2,2,2], []], [[1,5], []], [[1, 2, 3], []],
[[1,1,4],[]], [[1,1,2,2],[]], [[1,1,1,3],[]], [[1,1,1,1,2],[]],
[[1,1,1,1,1,1], []], [[4], [1,-1]], [[2], [2,-2]], [[], [3,-3]],
[[6], []], [[1,1,1,1], [1,-1]], [[1,1,2], [1,-1]], [[1,3], [1,-1]],[[2,2],[1,-1]], [[1,1],[2,-2]], [[1,1],[1,-1,1,-1]], [[2],[1,-1,1,-1]], [[1,-1,2,-2]], [[1,-1,1,-1,1,-1,1,-1]]]
```
Second, in a \for-loop", for each RC L above and p_6 , the algorithm Cond is called to generate the conditions for p_6

lists of p_6 for p_6 having L as its RC, and it turns out that $S = f[1;0;0;j 1;0;0]g$. Because S 6 ; and $[n; \cdot; r]$ does not meet the termination conditions, Cond also has to compute all possible sign lists of $\mathfrak{C}^1(\rho_6)$ which is ρ

 $[p6, [1, 0, -1, 0, 0, 1], [1, 0, 0, 0, 1], [1, 0, -1, -1, 0, 1],$ $[1,0,0,-1,0,1]$, $[1,0,-1,-1,-1,1]$, $[1,0,0,-1,-1,1]$, $[1,0,-1,1,1,1]$, $[1,0,0,1,1,1]$, $[1,0,-1,0,1,1]$, $[1,0,0,0,1,1]$, $[1,0,-1,-1,1,1]$, $[1,0,0,-1,1,1]$]

- (9) [[2],[2,-2]], if and only if
- $[p6, [1, 0, -1, 0, 0, 0]], [p63, [1, 1, -1], [1, 0, -1], [1, -1, -1]]$ (10) [[2],[1,-1,1,-1]], if and only if
- $[p6, [1, 0, -1, 1, 1, 0], [1, 0, 0, 1, 1, 0], [1, 0, -1, 0, 1, 0],$ $[1,0,0,0,1,0]$, $[1,0,-1,-1,1,0]$, $[1,0,0,-1,1,0]$]
- (11) [[],[1,-1,2,-2]], if and only if
- [p6, [1,0,0,1,0,0],[1,0,-1,1,0,0]]
- (12) [[],[1,-1,1,-1,1,-1]], if and only if $[p6, [1, 0, 0, 1, 0, -1], [1, 0, -1, 0, 0, -1], [1, 0, 0, 0, 0, -1],$ $[1,0,-1,1,-1,-1]$, $[1,0,0,1,-1,-1]$, $[1,0,-1,1,1,-1]$, $[1,0,0,1,1,-1]$, $[1,0,-1,0,1,-1]$, $[1,0,0,0,1,-1]$, $[1,0,-1,-1,1,-1]$, $[1,0,0,-1,1,-1]$, $[1,0,-1,1,0,-1]$]

where

- $(\#1)$ p62: =-9*c*a^3-180*d*c*a+192*d*b^2+Q1*x+Q2*x^2,
- $(\#2)$ p6: = $x^6 + a^*x^3 + b^*x^2 + c^*x + d$,
- (#3) $p63:=-3*a*x^3-4*b*x^2-5*c*x-6*d,$

and

- $Q1:=160$ *c*b^2-18*b*a^3-150*a*c^2-144*a*d*b,
- $Q2:=-27*a^4+108*d^*a^2-240*a*b*c+128*b^3,$
- $[1,0,0,1; j \; 1; j \; 1]$, $[j \; a^2 = 0 \; ^A D_4 > 0 \; ^A D_5 < 0 \; ^A D_6 < 0]$ $[1,0; j \; 1,1; 1; j \; 1]$, $[j \; a^2 < 0 \; ^A D_4 > 0 \; ^A D_5 > 0 \; ^A D_6 < 0]$ $[1,0,0,1,1,j,1]$, $[i \t a^2 = 0 \t A D_4 > 0 \t A D_5 > 0 \t A D_6 < 0]$ $[1,0; j \; 1,0; 1; j \; 1]$, $[j \; a^2 < 0 \; A \; D_4 = 0 \; A \; D_5 > 0 \; A \; D_6 < 0]$ $[1,0,0,0,1,j,1]$, $[i \ a^2 = 0 \ ^A D_4 = 0 \ ^A D_5 > 0 \ ^A D_6 < 0]$ [1; 0; ¡1; ¡1; 1; ¡1] , [¡a ² < 0 ^ D⁴ < 0 ^ D⁵ > 0 ^ D⁶ < 0] $[1, 0, 0, j, 1, 1, 1, j]$ ¹ $[1, j, j]$, $[i, a^2 = 0 \land D_4 < 0 \land D_5 > 0 \land D_6 < 0]$ $[1,0; j \; 1,1; 0; j \; 1]$, $[j \; a^2 < 0 \; ^A D_4 > 0 \; ^A D_5 = 0 \; ^A D_6 < 0]$ Simplifying by hand or by QEPCAD (Brown, 2004), we conclude that case (12) holds
- , $D_6 < 0$ ^ $[D_4 > 0 _ D_5 > 0 _ [D_4 = 0$ ^ $D_5 = 0$]. Finally, by combining the conditions for case (11) and case (12), we obtain the desired

result: $(8x)[p_6 > 0]$, $[D_4 > 0 \land D_5 = 0 \land D_6 = 0]$ $[D_4 = 0 \land D_5 = 0 \land D_6 < 0]$ $[D_4 >$ 0° D_6 < 0] $[D_5 > 0^{\circ}$ D_6 < 0].

Example 29. Find the conditions on a/b ; c; d such that $(8x)[x^8 + ax^3 + bx^2 + cx + d > 0]$. $[D_4 + [B]D$

7. Conclusion

In this paper, we have proposed an improved algorithm for the automatic computation of the complete root classi¯cation of a real parametric polynomial, and a new test for nonrealizable conditions. However, some issues deserve further consideration. For example,

- Hong, H., 1993. Quanti⁻er elimination for formulas constrained by quadratic equations. ISSAC'93 Proceedings, ACM Press, 264-274.
- Je®rey, D.J., Corless, R.M., 2006. Linear Algebra in Maple. In CRC Handbook of Linear Algebra, Editor L. Hogben. Chapter 72.
- Liang, S., Je®rey, D.J., 2006. An algorithm for computing the complete root classi⁻cation of a parametric polynomial. Lecture Notes in Computer Science 4120, 116-130.
- Liang, S., Zhang, J., 1999. A complete discrimination system for polynomials with complex coe±cients and its automatic generation. Science in China (Series E) 42, 113-128.
- Lickteig, T., Roy, M.F., 2001. Sylvester-Habicht sequences and fast Cauchy index computation. Journal of Symbolic Computation 31, 315-341.
- Lombardi, H., Roy, M.F., Safely el Din, M., 2000. New structure theorem for subresultants. Journal of Symbolic Computation 29, 663-689.
- Rouillier, F., 2005. On solving parametric systems. In Workshop on Challenges in Linear and Polynomial Algebra in Symbolic Computation Software. Ban® International Research Center.
- Sylvester, J.J., 1853. On a theory of syzygetic relations of two rational integral functions,